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On the two q-analogue logarithmic functions:
lnq(w), ln{eq(z)}

Charles A Nelson† and Michael G Gartley‡
Department of Physics, State University of New York at Binghamton, Binghamton, NY 13902-
6016, USA

Received 19 August 1996

Abstract. There is a simple, multi-sheet Riemann surface associated witheq(z)’s inverse
function lnq (w) for 0 < q 6 1. A principal sheet for lnq (w) can be defined. However, the
topology of the Riemann surface for lnq (w) changes each timeq increases above the collision
point q∗

τ of a pair of the turning pointsτi of eq(x). There is also a power series representation
for lnq (1+w). An infinite-product representation foreq(z) is used to obtain the ordinary natural
logarithm ln{eq(z)} and the values of the sum rulesσ e

n ≡ ∑∞
i=1(1/zi)

n for the zeroszi of eq(z).
For |z| < |z1|, eq(z) = exp{b(z)} whereb(z) = − ∑∞

n=1
1
n
σ e

n zn. The values of the sum rules
for the q-trigonometric functions,σc

2n and σ s
2n+1, are q-deformations of the usual Bernoulli

numbers.

1. Introduction

The ordinary exponential and logarithmic functions find frequent and varied applications in
all fields of physics. Recently in the study of quantum algebras, theq-exponential function
[1] or mappingw = eq(z) has reappeared [2–4] from a rather dormant status in mathematical
physics. This order-zero entire function can be defined by

eq(z) ≡
∞∑

n=0

zn

[n]!
(1)

where

[n] = qn/2 − q−n/2

q1/2 − q−1/2
. (2)

The series in (1) converges uniformly and absolutely for all finitez. Since [n] is invariant
underq → 1/q, for real q it suffices to study 0< q 6 1. Theq-factorial is defined by
[n]! ≡ [n][n − 1] . . . [1], [0]! ≡ 1. As q → 1, eq(z) → exp(z), the ordinary exponential
function.

In [5], we reported some of the remarkable analytic and numerical properties of the
infinity of zeros,zi , of eq(x) for x < 0. In particular, asq increases above the first collision
point atq∗

z ≈ 0.14, these zeros collide in pairs and then move off into the complexz plane;
see figure 1. They move off as (and remain) a complex conjugate pairµA,Ā. The turning
points ofeq(z), i.e. the zeros of the first derivativee

′
q(z) ≡ deq(z)/dx, behave in a similar

manner. For instance, atq∗
τ ≈ 0.25 the first two turning points,τ1 andτ2, collide and move

off as a complex conjugate pairτA,Ā.

† E-mail address: cnelson@bingvmb.cc.binghamton.edu
‡ Present address: Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, NY 14623, USA
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Figure 1. Plot showing the behaviour of theq-analogue exponential functioneq(x) for x

negative. Theq = 0.1 curve displays the universal behaviour ofeq(x) for q < q∗
1 (q∗

1 ≈ 0.14).
As q increases above the first collision point atq∗

1 ≈ 0.14, the zeros,µi = zi , collide in pairs
and then move off into the complexz plane. They move off as (and remain) a complex conjugate
pair. Theq = 0.2 curve displays the behaviour ofeq(x) after the collision of the first pair of
zerosµ1, µ2 but before the collsion of the first pair of turning points. The first two turning
points τ1, τ2 collide atq∗

τ1 ≈ 0.25. The turning pointsτi of eq(z) are mapped into the branch
pointsbi , of lnq (w).

In this paper, we first show that there is a simple, multi-sheet Riemann surface associated
with w = eq(z)’s inverse functionz = lnq(w). As with the usual ln(w) function, the
Riemann surface ofz = lnq(w) defines a single-valued map onto the entire complexz

plane. Also, as in the usual case whenq = 1, a principal sheet forz = lnq(w) can be
defined. However, unlike for the ordinary ln(w) and exp(z), the topology of the Riemann
surface for lnq(w) changes each timeq increases above the collision pointq∗

τ of a pair of
the turning pointsτi of eq(z). The turning points ofeq(z) can be used to define square-root
branch points of lnq(w) in the complexw plane, i.e.bi = eq(τi).

In section 3, we obtain a power series representation for lnq(1 + w).
In the mathematics and physics literature†, one also finds the exponential functionEq(z)

defined by Jackson [7, 8]. It is also given by (1) but with [n] replaced by [n]J where

[n]J = q(n−1)/2[n] = 1 − qn

1 − q
. (3)

For q > 1, Eq(z) has simpler properties‡ than eq(z). We also construct the Riemann
surface for its inverse function Lnq(w). With the substitution [n] → [n]J , the power series
representation for lnq(1 + w) also holds for Lnq(1 + w).

In section 4, we use the infinite-product representation [5] foreq(z) (i) to obtain the
ordinary natural logarithm ln{eq(z)}, and (ii) to evaluate for arbitrary integern > 0 the sum

† Recent reviews of quantum algebras are listed in [6].
‡ For 0 < q < 1, Eq(z) is a meromorphic function whose power series converges uniformly and absolutely for
|z| < (1−q)−1 but diverges otherwise. However, by the relation,Es(x)E1/s (−x) = 1 for s real, results forq > 1
can be used for 0< q < 1, see [5].
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rules

σ e
n ≡

∞∑
i=1

(
1

zi

)n

(4)

for the zeroszi of eq(z). Therefore, forc-number arguments,

eq(x)eq(y) = exp{b(x) + b(y)} (5)

whereb(x) is defined below in (20). For|z| < |z1| the modulus of the first zero,

b(z) = −
∞∑

n=1

1

n
σ e

nzn. (6)

We also obtain the logarithms and values of the associated sum rules for all derivatives
and integrals ofeq(x), and for the associatedq-trigonometric functions [1, 5] cosq(z) and
sinq(z). These results also hold for the analogous functions involving [n]J .

Section 5 contains some concluding remarks. In particular, the values of the sum rules
for the q-trigonometric functions,σ c

2n andσ s
2n+1, areq-deformations of the usual Bernoulli

numbers.

2. Riemann surfaces ofq-analogue logarithmic functions lnq(w) and Lnq(w)

For two reasons, we begin by first analysing the Riemann surface associated with the
mapping of Jackson’s exponential functionw = u + iv = Eq(z) and of its inverse
z = x + iy = Lnq(w). First, the generic structure of the Riemann surface for Lnq(w)

for qE > 1 is the same as that for lnq(w) for qe < q∗
1(q∗

1 ≈ 0.14). Second, asqe

varies the topology of the Riemann surface changes for lnq(w) but the topology remains
invariant for Lnq(w) for all qE > 1. Normally we will suppress the superscriptsE or e on
the q ’s.

2.1. Riemann surface forLnq(w)

Figures 2 and 3 show the Riemann sheet structure and the mappings of Jackson’s exponential
functionw = Eq(z) and of its inversez = Lnq(w) for qE ≈ 1.09. These figures suffice for
illustrating the Riemann sheet for allq > 1 because the zeros and turning points ofEq(z)

do not collide, but simply move along the negativex-axis and out to infinity asq → 1.
These figures also illustrate the Riemann surface forw = eq(z) and z = lnq(w) but

only prior to the collision of the first pair of zeros atq ≈ 0.14.
Notice that the imaginary part Im{eq(z)} = 0 on all full contour lines in figure 2(b)

whereas the real part Re{eq(z)} = 0 on all broken contour lines. The turning points in the
complexz plane are denoted by small full squares, whereas their associated branch points
in w are denoted by small full circles (figure 3).

Numerically, for qE ≈ 1.09, the first four zeros ofEq(z) are located at−12.1111,
−13.2011,−14.3892,−15.6842. The first four turning points and Lnq(w)’s branch points
(bi in 10−11 units) are respectively at(τi, bi) = (−12.4, −43), (−13.6, 5.0), (−14.9, −1.8),
(−16.3, 4.4). SinceqE ≈ 1, the asymptotic formula in [5] forτE

i is a bad approximation
for these values.

Figures for the lower sheets of a Riemann surfacew are omitted in this paper since
they simply have the conjugate structures, per the Schwarz reflection principle.
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Figure 2. These two figures and figures 3(a) and (b) show the Riemann sheet structure and
the mappings of Jackson’s exponential functionEq(z) and of its inverse function Lnq (w) for
qE = 1.09. For instance,w = Eq(z) maps the region labelled ‘1, 2, 1L, 2L’ in figure 2(b) onto
the upper-half-plane (uhp) of the firstw sheet for Lnq (w); see figure 3(a). The turning points
τ1, τ2 are mapped respectively into the branch pointsb1, b2 of figure 3(a). These figures suffice
to illustrate the behaviour ofEq(z) and Lnq (w) for all qE > 1 because asqE → 1, the zeros
and turning points ofEq(z) do not collide, but simply move along the negativex-axis and out
to infinity. In the complexw plane the associated branch points of Lnq (w) all move into the
origin. This limit thereby gives the usual Riemann surface for exp(z) and ln(w). Figures 2 and
3 also illustrate the Riemann surface foreq(z) and lnq (w) but only prior to the collision of the
first pair of zeros, i.e. forq < q∗

1 (q∗
1 ≈ 0.14). Figures 4–8 show the Riemann surfaces ofeq(z)

and lnq (w) for largerq values,q∗
1 < q 6 1.
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Figure 3. (a) The first upper sheet of Lnq (w) for qE = 1.09. The turning pointsτ1, τ2 in figure 2
for Eq(z) are mapped respectively into the square-root branch pointsb1, b2 of figure 3(a) and
(b) for Lnq (w). An ‘opening spiral’, instead of the usual unit circle, is the ‘image’ of the
positivey-axis (thex = 0 line) in figure 2. The first lower sheet of Lnq (w) is the mirror image
of this figure (the reflection is through the horizontalu-axis); the lower sheets corresponding to
the other ‘upper sheet’ figures in this paper are similarly obtained. (b) The second upper sheet
of Lnq (w) for qE = 1.09. Note that the opening spiral continues that in (a). The cut above the
real axis fromb2 to ∞ goes back down to the first sheet, figure 3(a).
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Figure 4. This figure and figure (5) show the Riemann sheet structure and the mappings of
eq(z) and of its inverse function lnq (w) for 0.14 < q ≈ 0.22 < 0.25. For this range ofq, the
first two zerosµ1, µ2 of eq(x) have collided and have moved off as a complex conjugate pair
µA, µĀ; theµA zero is marked in this figure. Note that as in figure 2, Im{eq(z)} = 0 on all full
contour lines, whereas Re{eq(z)} = 0 on all broken coutour lines.

2.2. Riemann surface forlnq(w):

Forq . 0.14, figures 1–3 also show the topology and branch point structure for the mappings
w = eq(z) and its inversez = lnq(w).

Figures 4 and 5 are for after the collision of the first pair of zeros ofeq(z) but prior
to the collision of the first pair of its turning points, so the structure shown is generic for
0.14 < q < 0.25. Note thatwA = eq(µA) = 0 occurs as an analytic point forw = eq(z)

which is not possible for the ordinary exp(z) in the finitez plane.
Numerically, figures 4 and 5 are forq ≈ 0.22; the first two zeros ofeq(z) are located

at µA = −2.51+ i0.87, µĀ = µ̄A. The first two turning points and lnq(w)’s branch points
(bi in 10−3 units) are respectively at(τi, bi) = (−2.6, 47.70), (−4.7, 69.36).

Figures 6–8 are for after the collision of the first pair of turning points ofeq(z). The
topology of the Riemann surface has a new inter-surface structure due to this collision; the
figures and their captions explain this new structure. In particular compared with figure 5,
following the collision atq∗

τ1 ≈ 0.25, there no longer exists theb1 − b2 passage from the
lower half of the principalw sheet to the first lowerw sheet. Instead, thebA passages are
to the second upperw sheet.

Numerically, figures 6–8 are forq ≈ 0.35. The first two zeros ofeq(z) are now located
at µA = −2.8222+ i1.969, µĀ = µ̄A; the third zero remains on the negative real axis at
µ3 = −5.197 55. The first four turning points and lnq(w)’s branch points (bi in 10−3 units)
are respectively at(τi, bi) = (−3.5434±i1.329 45, 22.2415±i18.79), (−6.3471, −9.095 87),
(−10.7028, 87.536). In figures 7 and 8, for clarity of illustration, the position ofbA has
been displaced from its true position.
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Figure 5. The first upper sheet for lnq (w) for 0.14 < q ≈ 0.22 < 0.25. Whenq is increased
to q ≈ 0.25, the branch pointsb1 = b2 coincide since the turning pointsτ1, τ2 of figure 4 have
collided. Then, the branch cut to the first lower sheet no longer exists.τ1, τ2 become a complex
conjugate pairτA, τĀ and move off into the complexz plane, as shown in figures 6–8.

3. Power series representations for lnq(1 + w) and Lnq(1 + w)

To obtain the power series for lnq(1 + w), we write

lnq(1 + w) = c1w + c2w
2 + · · ·

=
∞∑

n=1

cnw
n.

(7)

Then fora = lnq(1 + w),

ea
q = 1 + a + a2

[2]!
+ · · ·

= 1 + w.

(8)

So by equating coefficients, we find

c1 = 1

cn = −
n∑

l=2

1

[l]!

{ ∑
(k1,k2,...,kl )

ck1ck2 . . . ckl

}
n > 2.

(9)

In order to follow later expressions in this paper, it is essential to understand the second
summation

∑
(k1,k2,...,kl )

: in it, eachki = ‘positive integer’,i = 1, 2, . . . , l. The expression
(k1, k2, . . . , kl) denotes that, for fixedn andl, the summation is the symmetric permutations
of each partition ofn which satisfy the condition ‘k1 + k2 + · · · kl = n’.
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Figure 6. This figure and figures 7 and 8 show the Riemann sheet structure and the mappings
of eq(z) and of its inverse function lnq (w) for q ≈ 0.35. The first two turning pointsτ1, τ2

of eq(x) have collided and have moved off as a complex conjugate pairτA, τĀ; the τA turning
point is marked in this figure,τA = −3.54+ i1.33. The line corresponding to theα′β ′ branch
cut throughbA, see figures 7 and 8, is the wiggly line fromα on thex < 0 axis, throughτA,
and on toβ on the Im{eq(z)} = 0 curve. τA (and bA) are fixed, butα and β (α′ and β ′) are
simple though arbitrary positions on their respective Im{eq(z)} = 0 lines. The third zeroµ3 of
eq(z) is still on thex < 0 axis.

For instance, forn = 4,∑
(k1,k2,k3,k4)

ck1ck2ck3ck4 = {c1c1c1c1} = (c1)
4

∑
(k1,k2,k3)

ck1ck2ck3 = {c1c1c2 + c1c2c1 + c2c1c1} = 3c1c1c2∑
(k1,k2)

ck1ck2 = {c2c2} + {c1c3 + c3c1} = (c2)
2 + 2c1c3.

(10)

This power series for lnq(1 + w) is expected to converge only for somew domain,
e.g. for w 6 ‘modulus of distance to the nearest branch point’. Note that asq → 0,
w = eq(z) → w = 1 + z andz = lnq(w) → z = w − 1, soeq{lnq(w)} → eq{w − 1} → w.

Thus, the first few terms give

lnq(1 + w) = w − 1

[2]!
w2 −

{
1

[3]!
− 2

[2]![2]!

}
w3

−
{

1

[4]!
− 2

[2]!

(
1

[3]!
− 2

[2]![2]!

)
+

(
1

[2]!

)3

− 3

[3]![2]!

}
w4 + · · ·

= w − 1

[2]!
w2 −

{
1

[3]!
− 2

(
1

[2]!

)2
}

w3

−
{

1

[4]!
− 5

[3]![2]!
+ 5

(
1

[2]!

)3
}

w4 + · · · (11)
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Figure 7. (a) The first upper sheet of lnq (w) for q = 0.35. The image of thex = 0 line
in the complexz plane is shown. (b) An enlargement of the first quadrant which shows the
α′β ′ branch cut. For clarity of illustration, the position ofbA has been displaced from its true
position atbA = 0.0222+ i0.0188.

Notice that here theq-derivative operation defines a new function,d lnq(w)/dqw ≡
lnq(w)

′ 6= 1/w, because it doesnot yield a knownq-special function since

d

dqw
lnq(1 + w) = 1 − w −

{
1

[2]!
− 2[3]

(
1

[2]!

)2
}

w2
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Figure 8. The second upper sheet of lnq (w) for q = 0.35. ThebA square-root branch point
only occurs on the first two upper sheets, i.e. in figure 7 and here. Theα′ point (not shown)
lies opposite theβ ′ point and to the left of thebA cut structure.

−
{

1

[3]!
− 5[4]

[3]![2]!
+ 5[4]

(
1

[2]!

)3
}

w3 + · · · (12)

unlike [5] for eq(z), cosq(z), and sinq(z).

4. Natural logarithms and sum rules for eq(z) and related functions

By the Hadamard–Weierstrass theorem, it was shown in [5] that the following order-zero
entire functions have infinite product representations in terms of their respective zeros:

eq(z) =
∞∏
i=1

(
1 − z

zi

)
(13)

e(r)
q (x) ≡ dr

dxr
eq(x) = αr

∞∏
i=1

(
1 − x

z
(r)
i

)
r = 1, 2, . . .

αr = r!

[r]!

(14)

e(−r)
q (x) =

∫ x

dx1

∫ x1

dx2 . . .

∫ xr

dxreq(xr) + poly deg(r − 1) r > 1

≡
∞∑

n=0

n!

(n + r)!

xn+r

[n]!

=
(

xr

r!

) ∞∏
i=1

(
1 − x

z
(−r)
i

)
(15)
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cosq(z) ≡
∞∑

n=0

(−)n
z2n

[2n]!

=
∞∏
i=1

(
1 −

(
z

ci

)2)
(16)

sinq(z) ≡
∞∑

n=0

(−)n
z2n+1

[2n + 1]!

= z

∞∏
i=1

(
1 −

(
z

si

)2)
. (17)

4.1. Derivation ofln{eq(z)} and of the values ofσ e
n ≡ ∑∞

i=1(1/zi)
n

By taking the ordinary natural logarithm of

eq(z) =
∞∏
i=1

(
1 − z

zi

)
(18)

we obtain

ln{eq(z)} =
∞∑
i=1

ln

{
1 − z

zi

}

= −z

{ ∞∑
i=1

(
1

zi

) }
− z2

2

{ ∞∑
i=1

(
1

zi

)2 }
− z3

3

{ ∞∑
i=1

(
1

zi

)3 }
. . .

= b(z) (19)

where the function

b(z) ≡
∞∑
i=1

ln

{
1 − z

zi

}
= −

∞∑
n=1

1

n
σ e

nzn |z| < |z1|. (20)

Figure 7 of [5] shows the polar partρi = |zi | of the first eight zeros ofeq(z) for
≈ 0.1 < q <≈ 0.95. Note thatρi > ρi−1 > ρ1 where ρ1 is the modulus of the first
zero. The functionb(z) = ln{eq(z)} is thereby expressed in terms of the sum rules for the
zeros ofeq(z) since

σ e
n ≡

∞∑
i=1

(
1

zi

)n

n = 1, 2, . . . . (21)

By (20), the multi-sheet Riemann surface ofb(z) = ln{eq(z)} consists of logarithmic branch
points at the zeros,zi , of eq(z).

The basic properties ofeq(x) displayed in figure 1 forq = 0.1 follow simply from these
expressions forb(u). For instance, the zeros ofeq(x) correspond to whereb(u) diverges.
A sign change ofeq(x) is due to the principal-value phase change of ‘+iπ ’ at the branch
point of ln{1 − z/zi}.

Next, to evaluate these sum rules we proceed as in the above derivation of the power
series representation for lnq(1 + w). We simply expand both sides of

eq(z) = eb(z)

1 + z

[1]!
+ z2

[2]!
+ · · · = 1 + b

1!
+ b2

2!
+ · · · .

(22)
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Equating coefficients then gives a recursive formula† for these sum rules:

σ e
1 = −1

σ e
n = n

{ n∑
l=2

(−)l

l!

( ∑
(k1,k2,···kl )

σk1σk2 · · · σkl

k1k2 . . . kl

)
− 1

[n]!

}
n > 2.

(23)

The notation in the second summation is explained following (9) for lnq(1 + w).

The first such sum rules are:
σ e

1 = −1

σ e
2 = 1 − 2

[2]!

σ e
3 = −1 + 3

[2]!
− 3

[3]!

σ e
4 = 1 − 4

[2]!
+ 4

[3]!
− 4

[4]!
+ 2

[2]![2]!
.

(24)

The values ofσ e
n can also be directly obtained from

σ e
n = n

n∑
l=1

(−)l

l

{ ∑
(k1,k2,···kl )

1

[k1]![ k2]! . . . [kl ]!

}
. (25)

Equation (25) follows by expanding (19):

b(z) = −
∞∑

n=1

1

n
σ e

nzn = ln(1 + y) = y − y2

2
+ y3

3
+ · · · (26)

where

y = eq(z) − 1 = z

[1]!
+ z2

[2]!
+ z3

[3]!
+ · · · (27)

and then equating coefficients ofzn.
Equivalently, these formulae can be interpreted as representations of the reciprocals of

the ‘bracket’ factorials in terms of sums of the reciprocals of the zeros ofeq(z):
1

[2]!
= 1

2!
− 1

2
σ e

2

1

[3]!
= 1

3!
− 1

2
σ e

2 − 1

3
σ e

3

1

[4]!
= 1

4!
− 1

4
σ e

2 − 1

3
σ e

3 − 1

4
σ e

4 + 1

8
(σ e

2 )2.

(28)

The results in this subsection also give ln{Eq(z)} for the analogousEq(z) for q > 1 by
the substitution [n] → [n]J .

4.2. Logarithms and sum rules for relatedq-analogue functions:

(i) For the ‘rth’ derivative ofeq(x), e(r)
q (x) ≡ dr

dxr eq(x), we similary obtain (αr ≡ r!
[r]! )

ln{e(r)
q (x)} = ln αr + b(r)(x) r = 1, 2, . . .

b(r)(z) =
∞∑
i=1

ln

(
1 − z

z
(r)
i

)
(29)

† Theseσe
n sum rules can also be evaluated [5] by expanding both sides of an infinite-product representation of

eq(z). In this way, fromσ e
n for the first fewn, we first discovered the general formulae (23) and (25). Equation (23)

describes a pattern similar to that occurring in the reversion (inversion) of power series.
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where the sum rules for the zeros of the ‘rth’ derivative ofeq(x) are

σ (r)
n ≡

∞∑
i=1

(
1

z
(r)
i

)n

. (30)

The values of theseeq(z) derivative sum rules are

σ
(r)

1 = − r + 1

[r + 1]

σ (r)
n = n

{ n∑
l=2

(−)l

l!

( ∑
(k1,k2,...,kl )

σ
(r)
k1

σ
(r)
k2

· · · σ (r)
kl

k1k2 . . . kl

)
− L(r)

n

} (31)

where theL(r)
n term is given by

L(r)
n = (n + r)(n + r − 1) . . . (n + 1)

[n + r]!

1

αr

= (r + n)(r + n − 1) . . . (r + 1)

[r + n][r + n − 1] . . . [r + 1]

1

n!
. (32)

Equivalently,

σ (r)
n = n

n∑
l=1

(−)l

l

{ ∑
(k1,k2,...,kl )

L
(r)
k1

L
(r)
k2

. . . L
(r)
kl

}
. (33)

Thus, the ‘rth’ derivative ofeq(z) is

e(r)
q (z) = r!

[r]!
exp{b(r)(z)} (34)

whereb(r)(z) = −∑∞
n=1

1
n
σ (r)

n zn, |z| < |z(r)

1 |.
(ii) For the ‘rth’ integral of eq(z) which is defined in (15), we obtain (βr ≡ 1/r!)

ln

{
e(−r)
q (x)

xr

}
= ln βr + b(−r)(x) r = 1, 2, . . .

b(−r)(z) =
∞∑
i=1

ln

(
1 − z

z
(−r)
i

) (35)

where the associated sum rules are

σ (−r)
n ≡

∞∑
i=1

(
1

z
(−r)
i

)n

. (36)

The values of theseeq(z) integral sum rules are

σ
(−r)

1 = − 1

r + 1

σ (−r)
n = n

{ n∑
l=2

(−)l

l!

( ∑
(k1,k2,...,kl )

σ
(−r)
k1

σ
(−r)
k2

. . . σ
(−r)
kl

k1k2 . . . kl

)
− r!n!

(r + n)![n]!

}
.

(37)

Equivalently,

σ (−r)
n = n

n∑
l=1

(−)l

l

{ ∑
(k1,k2,...,kl )

L
(−r)
k1

L
(−r)
k2

. . . L
(−r)
kl

}
(38)

where theL(−r)
m expression

L(−r)
m ≡ r!m!

(r + m)![m]!
(39)

is also thel = 1 term in (37).
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Thus, the ‘rth’ integral of eq(z) is

e(−r)
q (z) = zr

r!
exp{b(−r)(z)} (40)

whereb(−r)(z) = −∑∞
n=1

1
n
σ (−r)

n zn, |z| < |z(−r)

1 |.
(iii) For the q-trigonometric functions, we obtain for the cosq(z) function the

representation

cosq(z) = exp{bc(z)}

bc(z) =
∞∑
i=1

ln

(
1 −

(
z

ci

)2)
= −

∞∑
n=1

1

n
σ c

2nz
2n |z| < |c1|

(41)

where

σ c
2n ≡

∞∑
i=1

(
1

c2
i

)n

. (42)

The values of the cosine sum rules are

σ c
2 =

∞∑
i=1

(
1

ci

)2

= 1

[2]!

σ c
4 =

∞∑
i=1

(
1

ci

)4

=
(

1

[2]!

)2

− 2

[4]!

σ c
6 =

∞∑
i=1

(
1

ci

)
=

(
1

[2]!

)3

− 3

[2]![4]!
+ 3

[6]!

σ c
2n = n

{ n∑
l=2

(−)l

l!

( ∑
(k1,k2,...,kl )

σ c
2k1

σ c
2k2

. . . σ c
2kl

k1k2 . . . kl

)
− (−)n

[2n]!

}
.

(43)

Equivalently,

σ c
2n = n

n∑
l=1

(−)l

l

{ ∑
(k1,k2,...,kl )

Lc
2k1

Lc
2k2

. . . Lc
2kl

}
(44)

where as in the last expression of (43)

Lc
2m ≡ (−)m

[2m]!
. (45)

For the sinq(z) function, we find

sinq(z) = z exp{bs(z)}

bs(z) =
∞∑
i=1

ln

(
1 −

(
z

si

)2)
= −

∞∑
n=1

1

n
σ s

2n+1z
2n |z| < |s1|

(46)

where

σ s
2n+1 ≡

∞∑
i=1

(
1

s2
i

)n

. (47)



On the two q-analogue logarithmic functions 8113

The values of these sine sum rules are

σ s
3 =

∞∑
i=1

(
1

si

)2

= 1

[3]!

σ s
5 =

∞∑
i=1

(
1

si

)4

=
(

1

[3]!

)2

− 2

[5]!

σ s
7 =

∞∑
i=1

(
1

si

)6

=
(

1

[3]!

)3

− 3

[3]![5]!
+ 3

[7]!

σ s
2n+1 = n

{ n∑
l=2

(−)l

l!

( ∑
(k1,k2,...,kl )

σ s
2k1+1σ

s
2k2+1 . . . σ s

2kl+1

k1k2 . . . kl

)
− (−)n

[2n + 1]!

}
.

(48)

Equivalently,

σ s
2n+1 = n

n∑
l=1

(−)l

l

{ ∑
(k1,k2,···kl )

Ls
2k1+1L

s
2k2+1 · · ·Ls

2kl+1

}
(49)

where as in the last expression of (48)

Ls
2m+1 ≡ (−)m

[2m + 1]!
(50)

5. Concluding remarks

(1) The above sum rules and logarithmic results are representation independent; i.e. they
also hold for Jackson’sq-exponential functionEq(z), its derivatives, integrals, and also
for its associated trigonometic functions cosq(z) and sinq(z). The only change is that the
bracket, or deformed integer, [n] is to be replaced by [n]J ≡ 1−qn

1−q
.

Since [7, 5] the zeros ofEq(z) for q > 1 are at

zE
i = qi

1 − q
(51)

simple expressions follow: the values of the associated sum rules are

σE
n ≡

∞∑
i=1

(
1

zE
i

)n

= − (1 − q)n

1 − qn
= − (1 − q)n−1

[n]J
. (52)

A power series representation for the associated natural logarithm is

bE(z) ≡ ln{Eq(z)} =
∞∑
i=1

(1 − q)n

n(1 − qn)
zn =

∞∑
i=1

(1 − q)n−1

n[n]J
zn |z| <

∣∣∣∣ q

1 − q

∣∣∣∣ . (53)

For both representations, [n] and [n]J , of the derivatives and integrals ofeq(z), and of
the cosq(z) and sinq(z) functions, asymptotic formulae for their associated zeros are given
in [5] so simple expressions also follow for theirσn’s andb(z)’s in the regions where these
asymptotic formulae apply.

(2) Useful checks on the above results and for use in applications of them include:
(i) in the bosonic CS (coherent state) limitq → 1, the normal numerical values must

be obtained,
(ii) in the q → 0 limit, results corresponding [9] to fermionic CS’s should be obtained

(this is a quick, though quite trivial, check),
(iii) by the use of [n] → [n]J ≡ 1−qn

1−q
, the known exact zeros ofEq(z) for q > 1 can

be used for non-trivial checks. These zeros are atzE
i = qi/(1 − q).
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(3) The determination of the series expansion and a general representation for the usual
natural logarithm for theq-exponential function,b(z) = ln{eq(z)}, means that theq-analogue
coherent states can now be written in the form of an exponential operator acting on the
vacuum state:

|z〉q = N(|z|)
∞∑

n=0

zn

√
[n]!

|n〉q = N(|z|) exp{b(za+)}|0〉q (54)

where

b(za+) =
∞∑
i=1

ln

{
1 − za+

zi

}

b(za+) = za+ − 1

[2]!
(za+)2 −

{
1

[3]!
− 2

(
1

[2]!

)2
}

(za+)3

−
{

1

[4]!
− 5

[3]![2]!
+ 5

(
1

[2]!

)3
}

(za+)4 + . . . .

(55)

(4) The successful evaluations and applications of the sum rules for theq-trigonometric
functions motivate the following definitions ofq-analogue generalizations of the usual
Bernoulli numbers:

22n−1

(2n)!
Bq

n ≡
∞∑
i=1

(
1

si

)2n

(first kind) = σ s
2n+1 (56)

22n−1

(2n)!
B̃q

n ≡ 1

(22n − 1)

∞∑
i=1

(
1

ci

)2n

(second kind)= 1

(22n − 1)
σ c

2n. (57)

Hence, underq-deformation, the usual Bernoulli numbers become the values of the sum
rules for the reciprocals of the zeros of theq-analogue trigonometric functions, cosq(z)

and sinq(z). For the Riemann zeta function, these results do not yield a unique definition.
However, analogous simple definitions forp complex are

1

πp
ζq(p) ≡

∞∑
i=1

(
1

si

)p

(first kind) (58)

1

πp
ζ̃q(p) ≡ 1

(2p − 1)

∞∑
i=1

(
1

ci

)p

(second kind). (59)

Note added in proof. The ordinary natural logarithm ofEq(z) for 0 < q < 1 is shown to be related to aq-
analogue dilogarithm, Li2(z; q), in [10] and in the recent survey ofq-special functions by Koornwinder [11]:
From equation (53) andEs(x)E1/s (−x) = 1, for 0< q < 1

ln

{
Eq

(
z

1 − q

)}
=

∞∑
i=1

1

n(1 − qn)
zn ≡ Li 2(z; q) (60)

which is identical with (53). Formally [10],

lim
q↑1

(1 − q)Li 2(z; q) =
∞∑

n=1

zn

n2
= Li 2(z) (61)

the ordinary Euler dilogarithm. Other recent works onq-exponential functions are in [12].
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