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6016, USA
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Abstract. There is a simple, multi-sheet Riemann surface associated ayith's inverse
function In, (w) for 0 < ¢ < 1. A principal sheet for Ip(w) can be defined. However, the
topology of the Riemann surface for,lfw) changes each timg increases above the collision
point ¢} of a pair of the turning points; of e, (x). There is also a power series representation
for In, (14-w). An infinite-product representation fey (z) is used to obtain the ordinary natural
logarithm InNe, (z)} and the values of the sum ruleg = > 72, (1/z;)" for the zerog; of ¢, (2).

For |z| < |z1l, eq(z) = explb(z)} whereb(z) = — > o2, %J,fz”. The values of the sum rules
for the g-trigonometric functionsgs, and oy, ,,, are g-deformations of the usual Bernoulli
numbers.

1. Introduction

The ordinary exponential and logarithmic functions find frequent and varied applications in
all fields of physics. Recently in the study of quantum algebrasgtbgponential function

[1] or mappingw = ¢, (z) has reappeared [2—4] from a rather dormant status in mathematical
physics. This order-zero entire function can be defined by

0 7"
e,(z) = — Q)
1 ; [n]!
where
n/2 _ ,—n/2
q q
[n] - ql/z _ q_l/z‘ (2)

The series in (1) converges uniformly and absolutely for all fipiteSince |] is invariant
underqg — 1/q, for real ¢ it suffices to study O< g < 1. Theg-factorial is defined by
[n]! = [n][n —1]...[1], [O]'! = 1. Asq — 1, ¢,(z) — exp(z), the ordinary exponential
function.

In [5], we reported some of the remarkable analytic and numerical properties of the
infinity of zeros,z;, of ¢,(x) for x < 0. In particular, ag increases above the first collision
point atg’ ~ 0.14, these zeros collide in pairs and then move off into the complaiane;
see figure 1. They move off as (and remain) a complex conjugateupajt The turning
points ofe, (z), i.e. the zeros of the first derivati\éé (z) = de,(z)/dx, behave in a similar
manner. For instance, af ~ 0.25 the first two turning points;; andr,, collide and move
off as a complex conjugate paif, ;.

1 E-mail address: cnelson@bingvmb.cc.binghamton.edu
i Present address: Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, NY 14623, USA
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Figure 1. Plot showing the behaviour of thg-analogue exponential functios, (x) for x
negative. The; = 0.1 curve displays the universal behaviouregfx) for ¢ < g3 (g7 ~ 0.14).

As g increases above the first collision pointgt~ 0.14, the zerosu; = z;, collide in pairs
and then move off into the complexplane. They move off as (and remain) a complex conjugate
pair. Theq = 0.2 curve displays the behaviour ef(x) after the collision of the first pair of
zeros i, uz but before the collsion of the first pair of turning points. The first two turning
points 71, 72 collide atg}; ~ 0.25. The turning points; of ¢,(z) are mapped into the branch
pointsb;, of In, (w).

In this paper, we first show that there is a simple, multi-sheet Riemann surface associated
with w = ¢,(z)’s inverse functionz = In,(w). As with the usual ltw) function, the
Riemann surface of = In,(w) defines a single-valued map onto the entire complex
plane. Also, as in the usual case when= 1, a principal sheet for = In,(w) can be
defined. However, unlike for the ordinary(in) and expz), the topology of the Riemann
surface for Ip(w) changes each timg increases above the collision poigt of a pair of
the turning points; of e,(z). The turning points oé,(z) can be used to define square-root
branch points of Ip(w) in the complexw plane, i.e.b; = ¢, (1;).

In section 3, we obtain a power series representation fafl k# w).

In the mathematics and physics literatyrene also finds the exponential functi@p(z)
defined by Jackson [7, 8]. It is also given by (1) but witf) feplaced by £], where

1-4"
1—g°

[n]; = q" V2] = 3)
Forg > 1, E,(z) has simpler propertigsthan e,(z). We also construct the Riemann
surface for its inverse function Lw). With the substitutions] — [n];, the power series
representation for |1+ w) also holds for Lp(1 + w).

In section 4, we use the infinite-product representation [5]efar) (i) to obtain the
ordinary natural logarithm ke, (z)}, and (ii) to evaluate for arbitrary integer> 0 the sum

t Recent reviews of quantum algebras are listed in [6].

I For 0< g < 1, E;(z) is a meromorphic function whose power series converges uniformly and absolutely for
lz] < (1—q)’l but diverges otherwise. However, by the relatidl(x)E1/(—x) = 1 for s real, results fog > 1

can be used for & ¢ < 1, see [5].
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rules

()

i=1

for the zeros; of e,(z). Therefore, forc-number arguments,

eq(x)eq(y) = explb(x) + b(y)} ®)

whereb(x) is defined below in (20). Foz| < |z1| the modulus of the first zero,
> 1
b — = e n. 6
(2) ; 02 (6)

We also obtain the logarithms and values of the associated sum rules for all derivatives
and integrals ok, (x), and for the associateg-trigonometric functions [1, 5] cg$z) and
sin,(z). These results also hold for the analogous functions involvitg. [

Section 5 contains some concluding remarks. In particular, the values of the sum rules
for the g-trigonometric functionsg;, andoy;, ,,, areq-deformations of the usual Bernoulli
numbers.

2. Riemann surfaces ofg-analogue logarithmic functions Iny, and Lng,

For two reasons, we begin by first analysing the Riemann surface associated with the
mapping of Jackson’s exponential functiamn = u + iv = E,(z) and of its inverse

z = x +iy = Lng(w). First, the generic structure of the Riemann surface foy(in

for gf > 1 is the same as that for Jtw) for ¢¢ < ¢i(g; ~ 0.14). Second, ag;*

varies the topology of the Riemann surface changes fpuin but the topology remains
invariant for Ln,(w) for all g# > 1. Normally we will suppress the superscrigsor e on
theg’s.

2.1. Riemann surface fdm, (w)

Figures 2 and 3 show the Riemann sheet structure and the mappings of Jackson’s exponential
functionw = E,(z) and of its inverse = Ln, (w) for ¢* ~ 1.09. These figures suffice for
illustrating the Riemann sheet for ajl > 1 because the zeros and turning pointsEpfz)

do not collide, but simply move along the negativ@xis and out to infinity ag — 1.

These figures also illustrate the Riemann surfaceufor e, (z) andz = In,(w) but
only prior to the collision of the first pair of zeros at~ 0.14.

Notice that the imaginary part Ifg,(z)} = 0 on all full contour lines in figure 2
whereas the real part Rg(z)} = 0 on all broken contour lines. The turning points in the
complexz plane are denoted by small full squares, whereas their associated branch points
in w are denoted by small full circles (figure 3).

Numerically, forg® ~ 1.09, the first four zeros o, (z) are located at-12.1111,
—13.2011,-14.3892,—-15.6842. The first four turning points and Jfw)’s branch points
(b; in 1071 units) are respectively dt;, b;) = (—12.4, —43), (—13.6,5.0), (—14.9, —1.8),
(—16.3,4.4). Sinceq® ~ 1, the asymptotic formula in [5] fot/ is a bad approximation
for these values.

Figures for the lower sheets of a Riemann surfacare omitted in this paper since
they simply have the conjugate structures, per the Schwarz reflection principle.
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Figure 2. These two figures and figuresa3(and ) show the Riemann sheet structure and
the mappings of Jackson’s exponential functiByn(z) and of its inverse function Ly(w) for
gf =1.09. For instanceyw = E,(z) maps the region labelled /2, 1;,2;" in figure 2(b) onto
the upper-half-plane (uhp) of the firat sheet for Ly (w); see figure 3{). The turning points
11, T2 are mapped respectively into the branch points, of figure 3@). These figures suffice
to illustrate the behaviour of,(z) and Ln, (w) for all q% > 1 because agf — 1, the zeros
and turning points of£, (z) do not collide, but simply move along the negativ@xis and out
to infinity. In the complexw plane the associated branch points of,n) all move into the
origin. This limit thereby gives the usual Riemann surface for(exand InNw). Figures 2 and
3 also illustrate the Riemann surface fgrz) and In, (w) but only prior to the collision of the
first pair of zeros, i.e. foy < g (g7 ~ 0.14). Figures 4-8 show the Riemann surfaces gat)
and In, (w) for largerg values,gf < ¢ < 1.
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Figure 3. (a) The first upper sheet of Litw) for ¢£ = 1.09. The turning points,, , in figure 2

for E,(z) are mapped respectively into the square-root branch pbints, of figure 3@) and
(b) for Lng(w). An ‘opening spiral’, instead of the usual unit circle, is the ‘image’ of the
positive y-axis (thex = 0 line) in figure 2. The first lower sheet of |.(w) is the mirror image

of this figure (the reflection is through the horizontahxis); the lower sheets corresponding to
the other ‘upper sheet’ figures in this paper are similarly obtainkepTke second upper sheet

of Ln, (w) for ¢ = 1.09. Note that the opening spiral continues thatah (The cut above the
real axis fromb; to co goes back down to the first sheet, figura)3(
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4

Figure 4. This figure and figure (5) show the Riemann sheet structure and the mappings of
e,(z) and of its inverse function J(w) for 0.14 < ¢ ~ 0.22 < 0.25. For this range of, the

first two zerosuy, u2 of e, (x) have collided and have moved off as a complex conjugate pair
a1 theus zero is marked in this figure. Note that as in figure 2{dpiz)} = 0 on all full
contour lines, whereas Rg (z)} = 0 on all broken coutour lines.

2.2. Riemann surface fdn, (w):

Forg < 0.14, figures 1-3 also show the topology and branch point structure for the mappings
w = ¢,4(z) and its inverse = In,(w).

Figures 4 and 5 are for after the collision of the first pair of zerog,¢f) but prior
to the collision of the first pair of its turning points, so the structure shown is generic for
0.14 < g < 0.25. Note thatw, = ¢,(114) = 0 occurs as an analytic point far = ¢, (z)
which is not possible for the ordinary ep in the finitez plane.

Numerically, figures 4 and 5 are fgr~ 0.22; the first two zeros oé,(z) are located
atp, = —2.51410.87, uz = j14. The first two turning points and Jitw)’s branch points
(b; in 1072 units) are respectively dt;, b;) = (—2.6, 47.70), (—4.7, 69.36).

Figures 6-8 are for after the collision of the first pair of turning pointggt). The
topology of the Riemann surface has a new inter-surface structure due to this collision; the
figures and their captions explain this new structure. In particular compared with figure 5,
following the collision atg}; ~ 0.25, there no longer exists thg — b, passage from the
lower half of the principakw sheet to the first lowew sheet. Instead, the, passages are
to the second upper sheet.

Numerically, figures 6-8 are far ~ 0.35. The first two zeros of,(z) are now located
at ps = —2.82224i1.969 n; = [ia; the third zero remains on the negative real axis at
uz = —5.197 55. The first four turning points and,lw)’s branch points4; in 1073 units)
are respectively dtr;, bj) = (—3.5434+i1.329 45 22.2415+i18.79), (—6.3471, —9.095 87,
(—10.7028 87.536). In figures 7 and 8, for clarity of illustration, the position bf has
been displaced from its true position.
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Figure 5. The first upper sheet for Jitw) for 0.14 < ¢ ~ 0.22 < 0.25. Wheng is increased
to ¢ ~ 0.25, the branch points; = b, coincide since the turning pointg, t> of figure 4 have

collided. Then, the branch cut to the first lower sheet no longer exists; become a complex
conjugate pairc4, 7; and move off into the complex plane, as shown in figures 6-8.

3. Power series representations for Ip(1 + w) and Lng(1+ w)

To obtain the power series for (L + w), we write

In, (1+ w) :clw+02w2+...

S )
= Z caw".
n=1
Then fora = In, (14 w),
c=14a+ @ +
e = a - PN
! [2]! (8)
=1+ w.
So by equating coefficients, we find
Cc1 = 1
n 1 9
cn:—le{ Z cklckz...ck,} n>=2 ©)
1=2 [ (kg ka,....kr)
In order to follow later expressions in this paper, it is essential to understand the second
summation)_, . init, eachk; = ‘positive integer’,i = 1,2,...,1. The expression
(k1, k2, . .., k;) denotes that, for fixed and/, the summation is the symmetric permutations

of each partition of: which satisfy the conditionky + &k, + - - -k, = n'.
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Figure 6. This figure and figures 7 and 8 show the Riemann sheet structure and the mappings
of e, (z) and of its inverse function Jnw) for ¢ ~ 0.35. The first two turning points;, 7>

of ¢, (x) have collided and have moved off as a complex conjugatepait ;; the r4 turning

point is marked in this figurer4 = —3.54+i1.33. The line corresponding to thég’ branch

cut throughb 4, see figures 7 and 8, is the wiggly line framon thex < 0 axis, throughr,,

and on tog on the Ire, (z)} = 0 curve. T4 (andb,) are fixed, butx and 8 (¢’ and g’) are
simple though arbitrary positions on their respectivédpiz)} = 0 lines. The third zergus of

¢,(z) is still on thex < 0 axis.

For instance, fon = 4,

4
E Cky ChyChsChy = {C101C1€1} = (C1)
(k1,k2,k3,ka)

Y Cuicr, = lercaca + crcacr + cacrc1} = 3ercacy (10)
(k1,k2,k3)
D e, = {caca) + {eacs + cacr) = (c2)? + 2excs.
(k1,k2)

This power series for |{1 + w) is expected to converge only for some domain,
e.g. forw < ‘modulus of distance to the nearest branch point’. Note thay as 0,
w=r¢e,(z) >w=14+zandz =In,(w) > z =w — 1, soe,{In;(w)} = ¢,{w -1} - w.

Thus, the first few terms give

1 1 2
Inq(1+w)=w—ﬁw2— {[3]! P }w3

1 2 1 2 1 3 3 \
_{[4]’_[2]!<[C’v]!_[2]![2]!>+<[2]!> —[3]![2]!}111 T
1 1 1\2
:w—[z]!wZ_{[s]!_2<[2]!> }ws

1 5 1\
_{[4]!_ G +5<[2]!) }w4+"' -
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Figure 7. (a) The first upper sheet of Jtw) for ¢ = 0.35. The image of thex = 0O line

in the complexz plane is shown. i) An enlargement of the first quadrant which shows the
o'’ branch cut. For clarity of illustration, the position bfi has been displaced from its true
position atb, = 0.0222+i0.0188.

Notice that here the-derivative operation defines a new functiahin, (w)/d,w =
Inq(w)' # 1/w, because it doesot yield a knowng-special function since

d 1 1\ ,
dqwlnq(1+w)=1—w—{[2]!—2[3]<[2]!) }w



8108 C A Nelson ad M G Gartley
-20 t 100

T ® Ing W)

Second w sheet

Passage downto 1

Down to first sheet

— ]
|
" t t Yy >

b,
Passage down to uhp 4 Up to third sheet
of second lower sheet

Figure 8. The second upper sheet of,{w) for ¢ = 0.35. Theb, square-root branch point
only occurs on the first two upper sheets, i.e. in figure 7 and here.aTlpeint (not shown)
lies opposite the8’ point and to the left of thé, cut structure.

3
—{ . o1 ey <1> }w3~|—~- (12)

BB [2)
unlike [5] for ¢, (z), cos,(z), and sif(z).

4. Natural logarithms and sum rules for e,(z) and related functions

By the Hadamard—Weierstrass theorem, it was shown in [5] that the following order-zero
entire functions have infinite product representations in terms of their respective zeros:

e =] (1 - Z) (13)

i=1 i

d e x
(r) — — —
e (x) = req(x)—a,.l |<1—Z(r)> r=12...

i=1 i (14)

r!
oz,:W

x X1 Xr
e;’”(x) = / dx1/ dxs.. / dx,e,(x.) + poly deg(r — 1) r>1

n+r

nl x
=2 ot il

0
= (5)I(--5) (15)
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Z2n

cog(x) =) ()" 2l
n=0 )

-T1(-(2))

2n+1

: >\ ., Z
sin,(z) = ZO(—) m

6

4.1. Derivation ofin{e,(z)} and of the values of? = >"°,(1/z;)"

By taking the ordinary natural logarithm of

ey =] (1 - Z) (18)

i=1 Zi

we obtain

Zi

RO R SIEC)

Infe, ()} =) In {1_ Z}
i=1

= b(2) (19)
where the function
bz)=) Inj1— "t =->» ~o7" . 20
) ; { Zi} ;na,,z 2| < |zal (20)
Figure 7 of [5] shows the polar pa; = |z;| of the first eight zeros ok,(z) for

~ 0.1 < g <~ 0.95. Note thatp; > p;_1 > p1 Where p; is the modulus of the first
zero. The functiorb(z) = In{e,(z)} is thereby expressed in terms of the sum rules for the
zeros ofe, (z) since

. o0 1 n
U"_,;:(Zi) n=12.... (21)
By (20), the multi-sheet Riemann surfacebgt) = In{e,(z)} consists of logarithmic branch
points at the zerosg;, of e, (z).

The basic properties @f, (x) displayed in figure 1 foy = 0.1 follow simply from these
expressions fob(u). For instance, the zeros ef (x) correspond to wheré(x) diverges.
A sign change ok, (x) is due to the principal-value phase change-piz’ at the branch
point of In{1 — z/z;}.

Next, to evaluate these sum rules we proceed as in the above derivation of the power
series representation for Il + w). We simply expand both sides of

eq(Z)=€b(Z)
TR U P ALt @2
AT IR TR TR
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Equating coefficients then gives a recursive formdta these sum rules:
oj =-1
"L (=) 1 23
a,f:n{z(l)< Y Tl “"1)_1} n>2. (23)
— I (k1K k) klkz .. .kl [I’l]

The notation in the second summation is explained following (9) fp(lr- w).
The first such sum rules are:

oj =-1
. 2
]
(., 3% 3 24
BT @
4 4 4 2
o, =1

ENECINIE
The values ob¢ can also be directly obtained from

Y (—)l{ 1 }
;= - e 25
e ZZ:I; ! (kl,;.k,) [ka]![&2]! . . . [&]! (25)
Equation (25) follows by expanding (19):
o 1 e_n y2 y3
b(Z):—;;anz =In(l+y)=y—3+§+... (26)
where
—e()—l—i+i2+is+... 27)
e I P T

and then equating coefficients gf.
Equivalently, these formulae can be interpreted as representations of the reciprocals of
the ‘bracket’ factorials in terms of sums of the reciprocals of the zerag @:

101 1,

- = — — —0

2 2t 2°7?

1 1 1. 1

L1 1. 1. 28
@B 31 2727 3% (28)
1 1 1

eleleleZ
g = 4 4% 3% ot s

The results in this subsection also givgA(z)} for the analogou, (z) for ¢ > 1 by
the substitutionf] — [n];.

4.2. Logarithms and sum rules for relatgdanalogue functions:
(i) For the rth’ derivative ofe, (x), e{” (x) = %eq (x), we similary obtain ¢, = %)

In{e;r)(x)} =Ina, + 5" (x) r=12...

o0
b (z) = Zln(l— f))
i=1 <

1 Theseos, sum rules can also be evaluated [5] by expanding both sides of an infinite-product representation of
e,(z). Inthis way, fromo; for the first fewn, we first discovered the general formulae (23) and (25). Equation (23)
describes a pattern similar to that occurring in the reversion (inversion) of power series.

(29)
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where the sum rules for the zeros of théh® derivative ofe, (x) are
o0 1 n
) —
= Z;<z<(r)> ' (30)

The values of these, (z) derivative sum rules are
a(r) _ r + 1
1 [r + 1]

n oo I CR( (31)
O‘VEr) _ n{ Z (_I) < Z Ukl Ukz Uk[ ) _ L;(qr)}

= I (o k) kiko ...k

where theL" term is given by

L0 — (n—i—r)(n—i—r—l)...(n—i—l)i_ (r—l—n)(r—i—n—l)...(r—}—l)i (32)
o [n+ ]! o [r+n][r+n—-1...[r+1]n!"

Equivalently,

n__yl
a,gw:nz(l){ > L(’)L(')..L,S)}.
=1

(33)
(ka,k2,....k;)
Thus, the #th’ derivative ofe,(z) is
el (z) = o ]| ' explb™ (2)) (34)

whereb® (z) = =3 2% 1o02", |z| < 28]

(if) For the ‘rth’ integral of e, (z) which is defined in (15), we obtaig( = 1/r!)

el (x
In{ g ()}=|n/8r+b<”(x) r=1,2,...
xr

(35)
oo Sn(a- )

where the associated sum rules are

oo 1 n
(=r) —
=3 (-5
i

(36)
i=1
The values of these, (z) integral sum rules are
1
(=n _ _
A r+1
n r r r 37
U(V)zn{z(_)l( Z CTk(l )Ok(z )"'016(1 )>_ rin! } ( )
. ~ 1 Gk kiky ... K (r +n)![n]!
Equivalently,
—r S (_)l r r r)
o =ny_ e doooLgrLy" L (38)
=1 (k1,k2,....k;)
where theL(™ expression
Im!
(- _ rim! 39
" (r+m)[m]! (39)
is also thel = 1 term in (37).
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Thus, the #th’ integral of e, (z) is

Zr
eflir)(Z) = F eXp{b(fr)(Z)} (40)
whereb")(z) = — Y2, Jo, 2", [z < Jzp ).

(i) For the g-trigonometric functions, we obtain for the ¢@s) function the
representation

cos,(z) = exp(b‘(2)}

> ? =1 41
b(z) = Zm(l— (Z> ) = _ZEUQL;ZZZ" lz| < leal (+1)
i=1

Ci

where

=34, @

Il
[N

3 3 (43)

() |
o5 = i (:) = ([2]!>3 T2y e
Equivalently,

n A\l
crzcn:nz(l){ > L;legkz...Lgk,} (44)

=1 (k1.k2,....k;)

where as in the last expression of (43)

e = "

= 2m] (45)

For the sip(z) function, we find

sin, (z) = z exp{b’(2)}

00 2 © 1 46
b'@) = Z'”(l‘ <Z> ) == o™ l<lsl o
i=1 !

n=1

where

03 4q = i (12> . (47)
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The values of these sine sum rules are

4-5() =g
i=1 sl @
i=5() = (1) &
‘= [3]! [5]!
x© /1\° 3 3 (48)
B 21: () ([3]') E[Ou
0,3‘ — n{ - Q O—ékl-‘rlo—ékz-‘rl et 02‘](/-}—1) _ (_)I‘l }
2t 0\, kz " kikz ...k [2n + 1]!
Equivalently,
s - (_)[ s s s
Oont1 =1 Z l{ Z Loy y1Llop41 - LZk,+1} (49)
=1 (k1,kp,-k;)
where as in the last expression of (48)
P G
L2m+1 = m (50)

5. Concluding remarks

(1) The above sum rules and logarithmic results are representation independent; i.e. they
also hold for Jackson’g-exponential functionk,(z), its derivatives, integrals, and also
for its associated trigonometic functions ¢@9 and sin (z). The only change is that the

bracket, or deformed integen;][is to be replaced byn]]; = ‘Z )
Since [7, 5] the zeros of,(z) for ¢ > 1 are at

i

E q
E _ 51
d =1, (51)
simple expressions follow: the values of the associated sum rules are
(1Y 1-9)" L-—g™
r= 2 1—g" [l (52)
A power series representation for the associated natural logarithm is
[ee] n o0 n—1
1-9) 1-9) q
b*(z) = IN{E,(2)} = 7" = —17" |z] < |——— 53
! ;na—q") ; nlnl, 1-q ©9

For both representations;][and [],, of the derivatives and integrals ef(z), and of
the cog(z) and sip(z) functions, asymptotic formulae for their associated zeros are given
in [5] so simple expressions also follow for theif's andb(z)’s in the regions where these
asymptotic formulae apply.

(2) Useful checks on the above results and for use in applications of them include:

(i) in the bosonic CS (coherent state) ligit— 1, the normal numerical values must
be obtained,

(ii) in the ¢ — O limit, results corresponding [9] to fermionic CS’s should be obtained
(this is a quick, though quite trivial, check)

(iii) by the use of ] — [n]; = q , the known exact zeros df,(z) for g > 1 can
be used for non-trivial checks. These zeros arefat ¢' /(1 — q).



8114 C A Nelson ad M G Gartley

(3) The determination of the series expansion and a general representation for the usual
natural logarithm for thg-exponential functions(z) = In{e,(z)}, means that thg-analogue
coherent states can now be written in the form of an exponential operator acting on the
vacuum state:

1z)q = N(lz]) ; ﬁln)q = N(lz]) explb(za™)}|0), (54)

where

o0 +
bza®) =) In {1— d }

i=1 i

2
b(za*) = za™ — [21]!(Za+)2 — {[31]| -2 <[21]') } (za™)® (55)

1 5 1\3
—{[4]! melal +5([2]!) ](za+)4+....

(4) The successful evaluations and applications of the sum rules fgrtitigonometric
functions motivate the following definitions af-analogue generalizations of the usual
Bernoulli numbers:

22}’[—1 [e’e} 1 2n i .

@) B! = Zl: () (first kind) = 03, ,, (56)
221 1 &1\ _ 1,

@i Bl = @ 1) ; <c> (second kind)= @ % (57)

Hence, undeg-deformation, the usual Bernoulli numbers become the values of the sum
rules for the reciprocals of the zeros of theanalogue trigonometric functions, ¢@s)

and siy(z). For the Riemann zeta function, these results do not yield a unique definition.
However, analogous simple definitions fprcomplex are

1 = (1\ . :
ﬁfq(p) = Z <> (first kind) (58)

i=1 !

! - (p) = o i ( 1>p (second kind) (59)
ar V= o1y 2\

Note added in proof The ordinary natural logarithm of,(z) for 0 < ¢ < 1 is shown to be related to &
analogue dilogarithm, kiz; ¢), in [10] and in the recent survey @f-special functions by Koornwinder [11]:
From equation (53) and; (x)E1/s(—x) =1,for0<g <1

z = 1 P
nfe (35, )} = 2 wat g = a0 0
which is identical with (53). Formally [10],

. . . " .

lim(1 - g)Liz(z: ) = ;ﬁ = Liz(2) (61)

the ordinary Euler dilogarithm. Other recent works g@xponential functions are in [12].
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